{ "id": "1912.02784", "version": "v1", "published": "2019-12-05T18:21:36.000Z", "updated": "2019-12-05T18:21:36.000Z", "title": "A nonstandard proof of de Finetti's theorem", "authors": [ "Irfan Alam" ], "comment": "10 pages", "categories": [ "math.PR", "math.LO" ], "abstract": "We give a nonstandard analytic proof of de Finetti's theorem for an exchangeable sequence of Bernoulli random variables. The theorem postulates that such a sequence is conditionally independent given the value of a uniquely distributed random parameter on the interval $[0,1]$. We use combinatorial arguments to show that this probability distribution is induced by a hyperfinite sample mean.", "revisions": [ { "version": "v1", "updated": "2019-12-05T18:21:36.000Z" } ], "analyses": { "subjects": [ "60G09", "60C05", "28E05", "03H05", "26E35" ], "keywords": [ "finettis theorem", "nonstandard proof", "nonstandard analytic proof", "bernoulli random variables", "hyperfinite sample mean" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }