{ "id": "1912.01573", "version": "v1", "published": "2019-12-03T18:15:45.000Z", "updated": "2019-12-03T18:15:45.000Z", "title": "Zeckendorf representations and mixing properties of sequences", "authors": [ "Neil Manibo", "Eden Miro", "Dan Rust", "Gwendolyn S. Tadeo" ], "categories": [ "math.DS", "math.NT" ], "abstract": "We use generalised Zeckendorf representations of natural numbers to investigate mixing properties of symbolic dynamical systems. The systems we consider consist of bi-infinite sequences associated with so-called random substitutions. We focus on random substitutions associated with the Fibonacci, tribonacci and metallic mean numbers and take advantage of their respective numeration schemes.", "revisions": [ { "version": "v1", "updated": "2019-12-03T18:15:45.000Z" } ], "analyses": { "subjects": [ "11B39", "37A25", "37B10" ], "keywords": [ "mixing properties", "random substitutions", "metallic mean numbers", "respective numeration schemes", "natural numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }