{ "id": "1912.01523", "version": "v1", "published": "2019-12-03T16:55:08.000Z", "updated": "2019-12-03T16:55:08.000Z", "title": "On sets containing a unit distance in every direction", "authors": [ "Pablo Shmerkin", "Han Yu" ], "comment": "13 pages, 2 figures", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "We investigate the box dimensions of compact sets in $\\mathbb{R}^n$ that contain a unit distance in every direction (such sets may have zero Hausdorff dimension). Among other results, we show that the lower box dimension must be at least $\\frac{n^2(n-1)}{2n^2-1}$ and can be at most $\\frac{n(n-1)}{2n-1}$. This quantifies in a certain sense how far the unit sphere $S^{n-1}$ is from being a difference set.", "revisions": [ { "version": "v1", "updated": "2019-12-03T16:55:08.000Z" } ], "analyses": { "subjects": [ "05D99", "28A80" ], "keywords": [ "unit distance", "sets containing", "lower box dimension", "zero hausdorff dimension", "compact sets" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }