{ "id": "1912.00880", "version": "v1", "published": "2019-12-02T15:58:03.000Z", "updated": "2019-12-02T15:58:03.000Z", "title": "Measure comparison and distance inequalities for convex bodies", "authors": [ "Alexander Koldobsky", "Grigoris Paouris", "Artem Zvavitch" ], "categories": [ "math.FA", "math.CA" ], "abstract": "We prove new versions of the isomorphic Busemann-Petty problem for two different measures and show how these results can be used to recover slicing and distance inequalities. We also prove a sharp upper estimate for the outer volume ratio distance from an arbitrary convex body to the unit balls of subspaces of $L_p$.", "revisions": [ { "version": "v1", "updated": "2019-12-02T15:58:03.000Z" } ], "analyses": { "subjects": [ "52A20", "53A15", "52B10" ], "keywords": [ "distance inequalities", "measure comparison", "outer volume ratio distance", "sharp upper estimate", "arbitrary convex body" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }