{ "id": "1912.00853", "version": "v1", "published": "2019-12-02T15:21:44.000Z", "updated": "2019-12-02T15:21:44.000Z", "title": "Oscillations of the error term in the prime number theorem", "authors": [ "Jan-Christoph Schlage-Puchta" ], "journal": "Acta Math. Hungar. 156 (2018), 303-308", "categories": [ "math.NT" ], "abstract": "Let $\\sigma+i\\gamma$ be a zero of the Riemann zeta function to the right of the line $\\frac{1}{2}+it$. We show that this zero causes large oscillations of the error term of the prime number theorem. Our result is close to optimal both in terms of the magnitude and in the localization of large values for the error term.", "revisions": [ { "version": "v1", "updated": "2019-12-02T15:21:44.000Z" } ], "analyses": { "subjects": [ "11N05" ], "keywords": [ "prime number theorem", "error term", "riemann zeta function", "large oscillations", "large values" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }