{ "id": "1912.00341", "version": "v1", "published": "2019-12-01T07:06:38.000Z", "updated": "2019-12-01T07:06:38.000Z", "title": "Casimir elements associated with Levi subalgebras of simple Lie algebras and their applications", "authors": [ "Dmitri I. Panyushev" ], "comment": "30 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak g$ be a simple Lie algebra, $\\mathfrak h$ a Levi subalgebra, and $C_{\\mathfrak h}\\in U(\\mathfrak h)$ the Casimir element defined via the restriction of the Killing form on $\\mathfrak g$ to $\\mathfrak h$. We study $C_{\\mathfrak h}$-eigenvalues in $\\mathfrak g/\\mathfrak h$ and related $\\mathfrak h$-modules. Without loss of generality, one may assume that $\\mathfrak h$ is a maximal Levi. Then $\\mathfrak g$ is equipped with the natural $\\mathbb Z$-grading $\\mathfrak g=\\bigoplus_{i\\in\\mathbb Z}\\mathfrak g(i)$ such that $\\mathfrak g(0)=\\mathfrak h$ and $\\mathfrak g(i)$ is a simple $\\mathfrak h$-module for $i\\ne 0$. We give explicit formulae for the $C_\\mathfrak h$-eigenvalues in each $\\mathfrak g(i)$, $i\\ne 0$, and relate eigenvalues of $C_\\mathfrak h$ in $\\bigwedge^\\bullet\\mathfrak g(1)$ to the dimensions of abelian subspaces of $\\mathfrak g(1)$. We also prove that if $\\mathfrak a\\subset\\mathfrak g(1)$ is abelian, whereas $\\mathfrak g(1)$ is not, then $\\dim\\mathfrak a\\le \\dim\\mathfrak g(1)/2$. Moreover, if $\\dim\\mathfrak a=(\\dim\\mathfrak g(1))/2$, then $\\mathfrak a$ has an abelian complement. The $\\mathbb Z$-gradings of height $\\le 2$ are closely related to involutions of $\\mathfrak g$, and we provide a connection of our theory to (an extension of) the \"strange formula\" of Freudenthal-de Vries.", "revisions": [ { "version": "v1", "updated": "2019-12-01T07:06:38.000Z" } ], "analyses": { "subjects": [ "17B20", "17B22", "15A75" ], "keywords": [ "simple lie algebra", "levi subalgebra", "casimir element", "applications", "explicit formulae" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }