{ "id": "1911.13195", "version": "v1", "published": "2019-11-29T17:01:15.000Z", "updated": "2019-11-29T17:01:15.000Z", "title": "Character degrees in $π$-separable groups", "authors": [ "N. Grittini" ], "categories": [ "math.GR" ], "abstract": "If a group $G$ is $\\pi$-separable, where $\\pi$ is a set of primes, the set of irreducible characters $\\operatorname{B}_{\\pi}(G) \\cup \\operatorname{B}_{\\pi'}(G)$ can be defined. In this paper, we prove that there are variants of some classical theorems in character theory, namely the Theorem of Ito-Michler and Thompson theorem on character degrees, which involve irreducible characters in the set $\\operatorname{B}_{\\pi}(G) \\cup \\operatorname{B}_{\\pi'}(G)$.", "revisions": [ { "version": "v1", "updated": "2019-11-29T17:01:15.000Z" } ], "analyses": { "subjects": [ "20C15" ], "keywords": [ "character degrees", "separable groups", "irreducible characters", "thompson theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }