{ "id": "1911.13109", "version": "v1", "published": "2019-11-29T13:56:03.000Z", "updated": "2019-11-29T13:56:03.000Z", "title": "Multiplicity of solutions for the Minkowski-curvature equation via shooting method", "authors": [ "Alberto Boscaggin", "Francesca Colasuonno", "Benedetta Noris" ], "comment": "18 pages, 4 figures", "categories": [ "math.AP" ], "abstract": "In this paper we prove the existence and the multiplicity of radial positive oscillatory solutions for a nonlinear problem governed by the mean curvature operator in the Lorentz-Minkowski space. The problem is set in a ball $B_R$ of $\\mathbb R^N$ and is subject to Neumann boundary conditions. The main tool used is the shooting method for ODEs.", "revisions": [ { "version": "v1", "updated": "2019-11-29T13:56:03.000Z" } ], "analyses": { "subjects": [ "35J62", "35B05", "35A24", "35B09", "34B18" ], "keywords": [ "shooting method", "minkowski-curvature equation", "multiplicity", "neumann boundary conditions", "radial positive oscillatory solutions" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }