{ "id": "1911.12698", "version": "v1", "published": "2019-11-28T13:30:03.000Z", "updated": "2019-11-28T13:30:03.000Z", "title": "Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces", "authors": [ "Michał Lipiński", "Jacek Kubica", "Marian Mrozek", "Thomas Wanner" ], "categories": [ "math.DS", "math.AT", "math.CO" ], "abstract": "In this paper we present the theory of combinatorial multivector fields in finite topological spaces. It generalizes the analogous theory for Lefschetz complexes recently introduced in \\cite{Mr2017}. We drop the restrictive assumpion in \\cite{Mr2017} that every multivector has a unique maximal element. In this setting we define isolated invariant sets, isolating neighborhood and index pairs and we construct the Conley index. We prove its additivity property.", "revisions": [ { "version": "v1", "updated": "2019-11-28T13:30:03.000Z" } ], "analyses": { "keywords": [ "generalized combinatorial multivector fields", "finite topological spaces", "conley-morse-forman theory", "unique maximal element", "define isolated invariant sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }