{ "id": "1911.11963", "version": "v1", "published": "2019-11-27T05:37:17.000Z", "updated": "2019-11-27T05:37:17.000Z", "title": "Group topologies on integers and S-unit equations", "authors": [ "Saveliy Skresanov" ], "categories": [ "math.GR", "math.GN", "math.NT" ], "abstract": "A sequence of integers $ \\{ s_n \\}_{n \\in \\mathbb{N}} $ is called a T-sequence if there exists a Hausdorff group topology on $ \\mathbb{Z} $ such that $ \\{ s_n \\}_{n \\in \\mathbb{N}} $ converges to zero. For every finite set of primes $ S $ we build a Hausdorff group topology on $ \\mathbb{Z} $ such that every growing sequence of $ S $-integers converges to zero. As a corollary, we solve in the affirmative an open problem by I.V. Protasov and E.G. Zelenuk asking if $ \\{ 2^n + 3^n \\}_{n \\in \\mathbb{N}} $ is a T-sequence. Our results rely on a nontrivial number-theoretic fact about $ S $-unit equations.", "revisions": [ { "version": "v1", "updated": "2019-11-27T05:37:17.000Z" } ], "analyses": { "subjects": [ "54H11", "11D61", "11Z05" ], "keywords": [ "s-unit equations", "hausdorff group topology", "nontrivial number-theoretic fact", "t-sequence", "finite set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }