{ "id": "1911.11159", "version": "v1", "published": "2019-11-25T19:01:03.000Z", "updated": "2019-11-25T19:01:03.000Z", "title": "The equivariant Ehrhart theory of the permutahedron", "authors": [ "Federico Ardila", "Mariel Supina", "Andrés R. Vindas-Meléndez" ], "comment": "14 pages, 2 figures, 3 tables, comments welcomed", "categories": [ "math.CO" ], "abstract": "Equivariant Ehrhart theory enumerates the lattice points in a polytope with respect to a group action. Answering a question of Stapledon, we describe the equivariant Ehrhart theory of the permutahedron, and we prove his Effectiveness Conjecture in this special case.", "revisions": [ { "version": "v1", "updated": "2019-11-25T19:01:03.000Z" } ], "analyses": { "subjects": [ "05E18", "52A38", "52B15" ], "keywords": [ "permutahedron", "equivariant ehrhart theory enumerates", "lattice points", "group action", "effectiveness conjecture" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }