{ "id": "1911.10971", "version": "v1", "published": "2019-11-21T23:25:34.000Z", "updated": "2019-11-21T23:25:34.000Z", "title": "Formulae for the derivatives of heat semigroups", "authors": [ "K. D. Elworthy", "Xue-Mei Li" ], "journal": "J. Funct. Anal. 125 (1994), no. 1, 252-286", "categories": [ "math.PR" ], "abstract": "We use a basic martingale method to show a differentiation formula for the derivatives $$d(P_tf)(x_0)(v_0)={1\\over t} E f(x_t) \\int_0^t \\langle Y(x_s)(v_s),dB_t\\rangle_{R^m}.$$ These are proved first on $R^n$, then on manifolds. Afterwards for solutions of heat equations on differential forms, and a second order formula.", "revisions": [ { "version": "v1", "updated": "2019-11-21T23:25:34.000Z" } ], "analyses": { "keywords": [ "heat semigroups", "derivatives", "second order formula", "basic martingale method", "differential forms" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }