{ "id": "1911.10889", "version": "v1", "published": "2019-11-25T13:07:36.000Z", "updated": "2019-11-25T13:07:36.000Z", "title": "A strong renewal theorem for relatively stable variables", "authors": [ "Kohei Uchiyama" ], "comment": "13 pages", "categories": [ "math.PR" ], "abstract": "Let $X$ be a non-negative random variable that is relatively stable, or what amounts to the same, $\\int_0^x P[X>t]dt \\sim \\ell(x)$ for a slowly varying function $\\ell$. We show that if $X$ is not arithmetic, the renewal function $U(x)$ associated with $X$ satisfies $\\lim_{x\\to\\infty}[U(x+h)-U(x)]\\ell(x) = h$ for $h>0$. An obvious analogue also holds for the arithmetic variable. The extension to not necessarily non-negative $X$ is obtained.", "revisions": [ { "version": "v1", "updated": "2019-11-25T13:07:36.000Z" } ], "analyses": { "keywords": [ "strong renewal theorem", "relatively stable variables", "arithmetic", "renewal function", "slowly varying function" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }