{ "id": "1911.10306", "version": "v1", "published": "2019-11-23T03:32:18.000Z", "updated": "2019-11-23T03:32:18.000Z", "title": "Liouville type theorems for minimal graphs over manifolds", "authors": [ "Qi Ding" ], "categories": [ "math.DG", "math.MG" ], "abstract": "Let $\\Sigma$ be a complete Riemannian manifold with the volume doubling property and the uniform Neumann-Poincar$\\mathrm{\\acute{e}}$ inequality. We show that any positive minimal graphic function on $\\Sigma$ is a constant.", "revisions": [ { "version": "v1", "updated": "2019-11-23T03:32:18.000Z" } ], "analyses": { "keywords": [ "liouville type theorems", "minimal graphs", "complete riemannian manifold", "positive minimal graphic function", "volume doubling property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }