{ "id": "1911.09740", "version": "v1", "published": "2019-11-21T20:39:26.000Z", "updated": "2019-11-21T20:39:26.000Z", "title": "An Upper Bound for the Number of Rectangulations of a Planar Point Set", "authors": [ "Kiki Pichini" ], "comment": "8 pages, 5 figures", "categories": [ "math.CO", "cs.CG" ], "abstract": "We prove that every set of n points in the plane has at most $17^n$ rectangulations. This improves upon a long-standing bound of Ackerman. Our proof is based on the cross-graph charging-scheme technique.", "revisions": [ { "version": "v1", "updated": "2019-11-21T20:39:26.000Z" } ], "analyses": { "keywords": [ "planar point set", "upper bound", "rectangulations", "cross-graph charging-scheme technique", "long-standing bound" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }