{ "id": "1911.09526", "version": "v1", "published": "2019-11-19T19:59:27.000Z", "updated": "2019-11-19T19:59:27.000Z", "title": "A family of permutation trinomials in $\\mathbb{F}_{q^2}$", "authors": [ "Daniele Bartoli", "Marco Timpanella" ], "categories": [ "math.CO", "math.AG" ], "abstract": "Let $p>3$ and consider a prime power $q=p^h$. We completely characterize permutation polynomials of $\\mathbb{F}_{q^2}$ of the type $f_{a,b}(X) = X(1 + aX^{q(q-1)} + bX^{2(q-1)}) \\in \\mathbb{F}_{q^2}[X]$. In particular, using connections with algebraic curves over finite fields, we show that the already known sufficient conditions are also necessary.", "revisions": [ { "version": "v1", "updated": "2019-11-19T19:59:27.000Z" } ], "analyses": { "keywords": [ "permutation trinomials", "prime power", "characterize permutation polynomials", "algebraic curves", "finite fields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }