{ "id": "1911.08645", "version": "v1", "published": "2019-11-20T00:45:25.000Z", "updated": "2019-11-20T00:45:25.000Z", "title": "Classical W-algebras for centralizers", "authors": [ "A. I. Molev", "E. Ragoucy" ], "comment": "15 pages", "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "We introduce a new family of Poisson vertex algebras $\\mathcal{W}(\\mathfrak{a})$ analogous to the classical $\\mathcal{W}$-algebras. The algebra $\\mathcal{W}(\\mathfrak{a})$ is associated with the centralizer $\\mathfrak{a}$ of an arbitrary nilpotent element in $\\mathfrak{gl}_N$. We show that $\\mathcal{W}(\\mathfrak{a})$ is an algebra of polynomials in infinitely many variables and produce its free generators in an explicit form. This implies that $\\mathcal{W}(\\mathfrak{a})$ is isomorphic to the center at the critical level of the affine vertex algebra associated with $\\mathfrak{a}$.", "revisions": [ { "version": "v1", "updated": "2019-11-20T00:45:25.000Z" } ], "analyses": { "keywords": [ "classical w-algebras", "centralizer", "poisson vertex algebras", "arbitrary nilpotent element", "affine vertex algebra" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }