{ "id": "1911.07991", "version": "v1", "published": "2019-11-18T22:41:24.000Z", "updated": "2019-11-18T22:41:24.000Z", "title": "Smooth semi-Lipschitz functions and almost isometries of Finsler manifolds", "authors": [ "Aris Daniilidis", "Jesus Jaramillo", "Francisco Venegas M" ], "comment": "17 pages", "categories": [ "math.FA" ], "abstract": "The convex cone $SC_{\\mathrm{SLip}}^1(\\mathcal{X})$ of real-valued smooth semi-Lipschitz functions on a Finsler manifold $\\mathcal{X}$ is an order-algebraic structure that captures both the differentiable and the quasi-metric feature of $\\mathcal{X}$. In this work we show that the subset of smooth semi-Lipschitz functions of constant strictly less than $1$, denoted $SC_{1^{-}}^1(\\mathcal{X})$, can be used to classify Finsler manifolds and to characterize almost isometries between them, in the lines of the classical Banach-Stone and Mykers-Nakai theorems.", "revisions": [ { "version": "v1", "updated": "2019-11-18T22:41:24.000Z" } ], "analyses": { "subjects": [ "54C40", "54C65" ], "keywords": [ "isometries", "real-valued smooth semi-lipschitz functions", "quasi-metric feature", "order-algebraic structure", "mykers-nakai theorems" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }