{ "id": "1911.07666", "version": "v1", "published": "2019-11-18T14:46:23.000Z", "updated": "2019-11-18T14:46:23.000Z", "title": "On the Grothendieck-Serre Conjecture for Classical Groups", "authors": [ "Eva Bayer-Fluckiger", "Uriya A. First", "Raman Parimala" ], "comment": "29+10 pages (paper and appendix); comments are welcome", "categories": [ "math.AG", "math.KT", "math.NT" ], "abstract": "Let $(A,\\sigma)$ be an Azumaya algebra with involution over a regular semilocal ring $R$ and let $\\varepsilon\\in \\{\\pm 1\\}$. We prove that the Gersten-Witt complex associated to $(A,\\sigma)$ and $\\varepsilon$ is exact if (i) $\\dim R\\leq 2$, or (ii) $\\dim R\\leq 3$, $\\mathrm{ind}\\, A\\leq 2$ and $\\sigma$ is of the first kind, or (iii) $\\dim R\\leq 4$ and $\\mathrm{ind}\\, A$ is odd. As a corollary, we prove the Grothendieck-Serre conjecture on principal homogeneous spaces for all forms of $\\mathbf{GL}_n$, $\\mathbf{Sp}_{2n}$ and $\\mathbf{SO}_n$ when $\\dim R\\leq 2$, and all outer forms of $\\mathbf{GL}_{2n+1}$ when $\\dim R\\leq 4$. In the process, we present a new construction of the Gersten-Witt complex, defined using explicit second-residue maps.", "revisions": [ { "version": "v1", "updated": "2019-11-18T14:46:23.000Z" } ], "analyses": { "keywords": [ "grothendieck-serre conjecture", "classical groups", "gersten-witt complex", "explicit second-residue maps", "azumaya algebra" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }