{ "id": "1911.07664", "version": "v1", "published": "2019-11-13T13:49:08.000Z", "updated": "2019-11-13T13:49:08.000Z", "title": "On the upper embedding of Steiner triple systems and Latin squares", "authors": [ "Terry S. Griggs", "Thomas A. McCourt", "Jozef Siran" ], "comment": "arXiv admin note: text overlap with arXiv:1904.02919", "categories": [ "math.CO" ], "abstract": "It is proved that for any prescribed orientation of the triples of either a Steiner triple system or a Latin square of odd order, there exists an embedding in an orientable surface with the triples forming triangular faces and one extra large face.", "revisions": [ { "version": "v1", "updated": "2019-11-13T13:49:08.000Z" } ], "analyses": { "subjects": [ "05B07", "05B15", "05C10" ], "keywords": [ "steiner triple system", "latin square", "upper embedding", "extra large face", "triples forming triangular faces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }