{ "id": "1911.07008", "version": "v1", "published": "2019-11-16T10:26:37.000Z", "updated": "2019-11-16T10:26:37.000Z", "title": "First homology of a real cubic is generated by lines", "authors": [ "Sergey Finashin", "Viatcheslav Kharlamov" ], "comment": "7 pages", "categories": [ "math.AG" ], "abstract": "We suggest a short proof of O.Benoist and O.Wittenberg theorem (arXiv:1907.10859) which states that for each real non-singular cubic hypersurface $X$ of dimension $\\ge 2$ the real lines on $X$ generate the whole group $H_1(X(\\Bbb R);\\Bbb Z/2)$.", "revisions": [ { "version": "v1", "updated": "2019-11-16T10:26:37.000Z" } ], "analyses": { "subjects": [ "14P25" ], "keywords": [ "first homology", "real cubic", "real non-singular cubic hypersurface", "wittenberg theorem", "short proof" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }