{ "id": "1911.05295", "version": "v1", "published": "2019-11-13T05:02:38.000Z", "updated": "2019-11-13T05:02:38.000Z", "title": "An improved asymptotic formula for the distribution of irreducible polynomials in arithmetic progressions over Fq", "authors": [ "Zhang Zihan", "Han Dongchun" ], "categories": [ "math.CO" ], "abstract": "Let $\\mathbb{F}_{q}$ be a finite field with $q$ elements and $\\mathbb{F}_{q}[x]$ the ring of polynomials over $\\mathbb{F}_{q}$. Let $l(x), k(x)$ be coprime polynomials in $\\mathbb{F}_{q}[x]$ and $\\Phi(k)$ the Euler function in $\\mathbb{F}_{q}[x]$. Let $\\pi(l, k; n)$ be the number of monic irreducible polynomials of degree $n$ in $\\mathbb{F}_{q}[x]$ which are congruent to $l(x)$ module $k(x)$. For any positive integer $n$, we denote by $\\Omega(n)$ the least prime divisor of $n$. In this paper, we show that $$\\pi(l, k; n)=\\frac{1}{\\Phi(k)}\\frac{q^{n}}{n}+O\\left(n^{\\alpha}\\right)+O\\left(\\frac{q^{\\frac{n}{\\Omega{(n)}}}}{n}\\right),$$ where $\\alpha$ only depends on the choice of $k(x)\\in\\Fq$. Note that the above error term improves the one implied by Weil's conjecture. Our approach is completely elementary.", "revisions": [ { "version": "v1", "updated": "2019-11-13T05:02:38.000Z" } ], "analyses": { "keywords": [ "asymptotic formula", "arithmetic progressions", "distribution", "finite field", "coprime polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }