{ "id": "1911.04159", "version": "v1", "published": "2019-11-11T10:18:17.000Z", "updated": "2019-11-11T10:18:17.000Z", "title": "Critical site percolation in high dimension", "authors": [ "Markus Heydenreich", "Kilian Matzke" ], "comment": "30 pages", "categories": [ "math.PR" ], "abstract": "We use the lace expansion to prove an infra-red bound for site percolation on the hypercubic lattice in high dimension. This implies the triangle condition and allows us to deduce to derive several critical exponents that characterize mean-field behavior in high dimensions.", "revisions": [ { "version": "v1", "updated": "2019-11-11T10:18:17.000Z" } ], "analyses": { "subjects": [ "60K35", "82B43" ], "keywords": [ "high dimension", "critical site percolation", "lace expansion", "hypercubic lattice", "triangle condition" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }