{ "id": "1911.03767", "version": "v1", "published": "2019-11-09T20:04:14.000Z", "updated": "2019-11-09T20:04:14.000Z", "title": "Any isometry between the spheres of sufficiently smooth $2$-dimensional Banach spaces is linear", "authors": [ "Taras Banakh" ], "comment": "20 pages", "categories": [ "math.FA", "math.CA", "math.DG", "math.MG" ], "abstract": "A $2$-dimensional Banach space $X$ is called $\\breve W{}^{3,1}$-smooth if the polar parametrization $\\mathbf p:\\mathbb R\\to S_X$ of its unit sphere $S_X=\\{x\\in X:\\|x\\|=1\\}$ has locally absolutely continuous second derivative $\\mathbf p''$ and the vector $\\mathbf p''(t)$ is not collinear to $\\mathbf p'(t)$ for almost all $t\\in\\mathbb R$. We prove that any isometry $f:S_X\\to S_Y$ between the unit spheres of $S\\breve W{}^{3,1}$-smooth $2$-dimensional Banach spaces $X,Y$ extends to a linear isometry $\\bar f:X\\to Y$ of the Banach spaces $X,Y$. This answers the famous Tingley's problem in the class of $\\breve W{}^{3,1}$-smooth $2$-dimensional Banach spaces.", "revisions": [ { "version": "v1", "updated": "2019-11-09T20:04:14.000Z" } ], "analyses": { "subjects": [ "46B04", "46B20", "53A04", "26A46", "26A24", "46E35" ], "keywords": [ "dimensional banach space", "sufficiently smooth", "unit sphere", "absolutely continuous second derivative", "polar parametrization" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }