{ "id": "1911.03316", "version": "v1", "published": "2019-11-08T15:15:42.000Z", "updated": "2019-11-08T15:15:42.000Z", "title": "Branching problem on winding subalgebras of affine Kac-Moody algebras A^{(1)}_1 and A^{(2)}_2", "authors": [ "Khanh Nguyen Duc" ], "comment": "29 pages", "categories": [ "math.RT" ], "abstract": "Consider an affine Kac-Moody algebra $\\mathfrak{g}$ with Cartan subalgebra $\\lh$. Given $\\Lambda$ in the set $P_+$ of dominant integral weights of $\\mathfrak{g}$, we denote by $L(\\Lambda)$ the integrable highest weight $\\mathfrak{g}$-module with highest weight $\\Lambda$. For $\\mu\\in \\lh^*$, we denote by $L(\\Lambda)_\\mu$ the corresponding weight space. Consider the support $\\Gamma(\\lg,\\lh)$ of the decompositions of the $L(\\Lambda)$ as a $\\lh$-module: $$ \\Gamma(\\lg,\\lh)=\\{(\\Lambda,\\mu)\\,:\\, L(\\Lambda)_\\mu\\neq\\{0\\}\\}. $$ Consider now the winding subalgebra $\\mathfrak{g}[u]$ (for some positive integer $u$). The winding subalgebra $\\mathfrak{g}[u]$ is isomorphic to $\\lg$ but with a nontrivial embedding in $\\lg$ depending on the parameter $u$. Given $\\lambda$ in the set $\\dot{P}_+$ of dominant integral weights of $\\mathfrak{g}[u]$, we denote by $\\dot{L}(\\lambda)$ the integrable highest weight $\\mathfrak{g}[u]$-module with highest weight $\\lambda$. Then the $\\mathfrak{g}$-module $L(\\Lambda)$ decomposes as a direct sums of simple $\\lg[u]$-modules $\\dot{L}(\\lambda)$ with finite multiplicities. In this paper, we are interested in the supports of this decomposition, i.e., the set of pairs $(\\Lambda,\\lambda)$ in $P_+ \\times \\dot{P}_+$ such that the integrable highest weight $\\mathfrak{g}[u]$-modules $\\dot{L}(\\lambda)$ is a submodule of $L(\\Lambda)$. We show that both $\\Gamma(\\lg,\\lh)$ and $\\Gamma(\\lg,\\lg[u])$ are semigroups. Moreover, for the cases $A^{(1)}_1$ and $A^{(2)}_2$, we determine explicitly $\\Gamma(\\lg,\\lh)$. Finaly, we describe explicit subsets of $P_+ \\times \\dot{P}_+$ where the two semigroups coincide.", "revisions": [ { "version": "v1", "updated": "2019-11-08T15:15:42.000Z" } ], "analyses": { "subjects": [ "17B67", "17B10", "22E65" ], "keywords": [ "affine kac-moody algebra", "winding subalgebra", "integrable highest weight", "branching problem", "dominant integral weights" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }