{ "id": "1911.03173", "version": "v1", "published": "2019-11-08T10:36:45.000Z", "updated": "2019-11-08T10:36:45.000Z", "title": "The right-generators descendant of a numerical semigroup", "authors": [ "Maria Bras-Amorós", "Julio Fernández-González" ], "comment": "Accepted at Mathematics of Computation (AMS)", "categories": [ "math.CO", "math.AC" ], "abstract": "For a numerical semigroup, we encode the set of primitive elements that are larger than its Frobenius number and show how to produce in a fast way the corresponding sets for its children in the semigroup tree. This allows us to present an efficient algorithm for exploring the tree up to a given genus. The algorithm exploits the second nonzero element of a numerical semigroup and the particular pseudo-ordinary case in which this element is the conductor.", "revisions": [ { "version": "v1", "updated": "2019-11-08T10:36:45.000Z" } ], "analyses": { "keywords": [ "numerical semigroup", "right-generators descendant", "second nonzero element", "pseudo-ordinary case", "efficient algorithm" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }