{ "id": "1911.03151", "version": "v1", "published": "2019-11-08T09:46:03.000Z", "updated": "2019-11-08T09:46:03.000Z", "title": "Schauder and Sobolev Estimates of Parabolic Equations", "authors": [ "Guangying Lv", "Jinlong Wei" ], "comment": "6 pages", "categories": [ "math.AP" ], "abstract": "In this note, we use the non-homogeneous Poisson stochastic process to show how knowing Schauder and Sobolev estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs. The method is probability. We generalize the result of Krylov-Priola [7].", "revisions": [ { "version": "v1", "updated": "2019-11-08T09:46:03.000Z" } ], "analyses": { "keywords": [ "sobolev estimates", "parabolic equations", "one-dimensional heat equation", "non-homogeneous poisson stochastic process", "multidimensional analogs" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }