{ "id": "1911.02141", "version": "v1", "published": "2019-11-05T23:39:48.000Z", "updated": "2019-11-05T23:39:48.000Z", "title": "Automorphic Galois repesentations and the inverse Galois problem for certain groups of type $D_{2m}$", "authors": [ "Adrian Zenteno" ], "comment": "Preliminary version, comments are welcome", "categories": [ "math.NT", "math.GR" ], "abstract": "Let $\\ell$ be an odd prime and $m$ be a positive integer greater than two. In this paper, we prove that at least one of the following groups: $\\mbox{P}\\Omega^\\pm_{4m}(\\mathbb{F}_{\\ell^s})$, $\\mbox{PSO}^\\pm_{4m}(\\mathbb{F}_{\\ell^s})$, $\\mbox{PO}_{4m}^\\pm(\\mathbb{F}_{\\ell^s})$ or $\\mbox{PGO}^\\pm_{4m}(\\mathbb{F}_{\\ell^s})$ is a Galois group of $\\mathbb{Q}$ for infinitely many integers $s > 0$. This is achieved by making use of a slight modification of a group theory result of Khare, Larsen and Savin, and previous results of the author on the images of the Galois representations attached to cuspidal automorphic representations of $\\mbox{GL}_{4m}(\\mathbb{A}_\\mathbb{Q})$.", "revisions": [ { "version": "v1", "updated": "2019-11-05T23:39:48.000Z" } ], "analyses": { "subjects": [ "11F80", "12F12", "20G40" ], "keywords": [ "inverse galois problem", "automorphic galois repesentations", "cuspidal automorphic representations", "group theory result", "positive integer greater" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }