{ "id": "1911.01880", "version": "v1", "published": "2019-11-05T15:38:55.000Z", "updated": "2019-11-05T15:38:55.000Z", "title": "Analytic newvectors for $\\mathrm{GL}_n(\\mathbb{R})$", "authors": [ "Subhajit Jana", "Paul D. Nelson" ], "comment": "47 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "We relate the analytic conductor of a generic irreducible representation of $\\mathrm{GL}_n(\\mathbb{R})$ to the invariance properties of vectors in that representation. The relationship is an analytic archimedean analogue of some aspects of the classical non-archimedean newvector theory of Casselman and Jacquet--Piatetski-Shapiro--Shalika. We illustrate how this relationship may be applied in trace formulas to majorize sums over automorphic forms on $\\mathrm{PGL}_n(\\mathbb{Z}) \\backslash \\mathrm{PGL}_n(\\mathbb{R})$ ordered by analytic conductor.", "revisions": [ { "version": "v1", "updated": "2019-11-05T15:38:55.000Z" } ], "analyses": { "subjects": [ "11F55", "22E50" ], "keywords": [ "analytic newvectors", "analytic conductor", "analytic archimedean analogue", "classical non-archimedean newvector theory", "automorphic forms" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }