{ "id": "1911.01781", "version": "v1", "published": "2019-11-05T14:05:28.000Z", "updated": "2019-11-05T14:05:28.000Z", "title": "Parametric nonlinear resonant Robin problems", "authors": [ "Nikolaos S. Papageorgiou", "Vicenţiu D. Rădulescu", "Dušan D. Repovš" ], "journal": "Math. Nachr. 292:11 (2019), 2456-2480", "doi": "10.1002/mana.201800505", "categories": [ "math.AP", "math.DS" ], "abstract": "We consider a nonlinear Robin problem driven by the $p$-Laplacian. In the reaction we have the competing effects of two nonlinearities. One term is parametric, strictly $(p-1)$-sublinear and the other one is $(p-1)$-linear and resonant at any nonprincipal variational eigenvalue. Using variational tools from the critical theory (critical groups), we show that for all large enough values of parameter $\\lambda$ the problem has at least five nontrivial smooth solutions.", "revisions": [ { "version": "v1", "updated": "2019-11-05T14:05:28.000Z" } ], "analyses": { "subjects": [ "35J20", "35J60", "58E05" ], "keywords": [ "parametric nonlinear resonant robin problems", "nonlinear robin problem driven", "nonprincipal variational eigenvalue", "nontrivial smooth solutions", "variational tools" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }