{ "id": "1911.00092", "version": "v1", "published": "2019-10-31T20:26:55.000Z", "updated": "2019-10-31T20:26:55.000Z", "title": "Logarithmic variance for the height function of square-ice", "authors": [ "Hugo Duminil-Copin", "Matan Harel", "Benoit Laslier", "Aran Raoufi", "Gourab Ray" ], "comment": "30 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "In this article, we prove that the height function associated with the square-ice model (i.e.~the six-vertex model with $a=b=c=1$ on the square lattice), or, equivalently, of the uniform random homomorphisms from $\\mathbb Z^2$ to $\\mathbb Z$, has logarithmic variance. This establishes a strong form of roughness of this height function.", "revisions": [ { "version": "v1", "updated": "2019-10-31T20:26:55.000Z" } ], "analyses": { "keywords": [ "height function", "logarithmic variance", "uniform random homomorphisms", "square-ice model", "six-vertex model" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }