{ "id": "1910.14639", "version": "v1", "published": "2019-10-31T17:29:04.000Z", "updated": "2019-10-31T17:29:04.000Z", "title": "Smooth representations of unit groups of split basic algebras over non-Archimedean local fields", "authors": [ "Carlos A. M. André", "João Dias" ], "categories": [ "math.RT" ], "abstract": "We consider smooth representations of the unit group $G = \\mathcal{A}^{\\times}$ of a finite-dimensional split basic algebra $\\mathcal{A}$ over a non-Archimedean local field. In particular, we prove a version of Gutkin's conjecture, namely, we prove that every irreducible smooth representation of $G$ is compactly induced by a one-dimensional representation of the unit group of some subalgebra of $\\mathcal{A}$. We also discuss admissibility and unitarisability of smooth representations of G.", "revisions": [ { "version": "v1", "updated": "2019-10-31T17:29:04.000Z" } ], "analyses": { "subjects": [ "20G25", "22D12", "22D30" ], "keywords": [ "non-archimedean local field", "unit group", "finite-dimensional split basic algebra", "one-dimensional representation", "gutkins conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }