{ "id": "1910.14568", "version": "v1", "published": "2019-10-31T16:25:07.000Z", "updated": "2019-10-31T16:25:07.000Z", "title": "The Baouendi-Treves approximation Theorem for Gevrey classes and applications", "authors": [ "Gustavo Hoepfner", "Renan D. Medrado", "Luis F. Ragognette" ], "categories": [ "math.AP" ], "abstract": "In this work we show how to extend the seminal Baouendi-Treves approximation theorem for Gevrey functions and ultradistributions. As applications we present a Gevrey version of the approximate Poincar\\'e Lemma and study ultradistributions vanishing on maximally real submanifolds.", "revisions": [ { "version": "v1", "updated": "2019-10-31T16:25:07.000Z" } ], "analyses": { "keywords": [ "gevrey classes", "applications", "seminal baouendi-treves approximation theorem", "approximate poincare lemma", "gevrey version" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }