{ "id": "1910.14482", "version": "v1", "published": "2019-10-31T14:19:47.000Z", "updated": "2019-10-31T14:19:47.000Z", "title": "Extending the Parisi formula along a Hamilton-Jacobi equation", "authors": [ "J. -C. Mourrat", "D. Panchenko" ], "comment": "16 pages", "categories": [ "math.PR" ], "abstract": "We study the free energy of mixed $p$-spin spin glass models enriched with an additional magnetic field given by the canonical Gaussian field associated with a Ruelle probability cascade. We prove that this free energy converges to the Hopf-Lax solution of a certain Hamilton-Jacobi equation. Using this result, we give a new representation of the free energy of mixed $p$-spin models with soft spins.", "revisions": [ { "version": "v1", "updated": "2019-10-31T14:19:47.000Z" } ], "analyses": { "subjects": [ "82B44", "82D30" ], "keywords": [ "hamilton-jacobi equation", "parisi formula", "spin spin glass models", "ruelle probability cascade", "additional magnetic field" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }