{ "id": "1910.14365", "version": "v1", "published": "2019-10-31T10:52:25.000Z", "updated": "2019-10-31T10:52:25.000Z", "title": "On a system of difference equations of third order solved in closed form", "authors": [ "Youssouf Akrour", "Nouressadat Touafek", "Yacine Halim" ], "comment": "Manuscript submitted to a journal for publication on 20.08.2019", "categories": [ "math.DS", "nlin.SI" ], "abstract": "In this note we show the the system of difference equations $$ x_{n+1}=\\dfrac{ay_{n-2}x_{n-1}y_n+bx_{n-1}y_{n-2}+cy_{n-2}+d}{y_{n-2}x_{n-1}y_n},$$ $$y_{n+1}=\\dfrac{ax_{n-2}y_{n-1}x_n+by_{n-1}x_{n-2}+cx_{n-2}+d}{x_{n-2}y_{n-1}x_n},$$ where $n\\in \\mathbb{N}_{0}$, the initial values $x_{-2}$, $x_{-1}$, $x_0$, $y_{-2}$, $y_{-1}$ and $y_0$ are arbitrary nonzero real numbers and the parameters $a$, $b$, $c$ and $d$ are arbitrary real numbers with $d\\ne 0$, can be solved in a closed form. We will see that when $a=b=c=d=1$ the solutions are expressed using the famous Teteranacci numbers. In particular, the results obtained here extend those in our work \\cite{arxiv}.", "revisions": [ { "version": "v1", "updated": "2019-10-31T10:52:25.000Z" } ], "analyses": { "subjects": [ "39A10", "40A05" ], "keywords": [ "difference equations", "closed form", "third order", "arbitrary nonzero real numbers", "arbitrary real numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }