{ "id": "1910.12701", "version": "v1", "published": "2019-10-28T14:20:47.000Z", "updated": "2019-10-28T14:20:47.000Z", "title": "Limiting behavior of largest entry of random tensor constructed by high-dimensional data", "authors": [ "Tiefeng Jiang", "Junshan Xie" ], "comment": "21 pages", "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "Let ${X}_{k}=(x_{k1}, \\cdots, x_{kp})', k=1,\\cdots,n$, be a random sample of size $n$ coming from a $p$-dimensional population. For a fixed integer $m\\geq 2$, consider a hypercubic random tensor $\\mathbf{{T}}$ of $m$-th order and rank $n$ with \\begin{eqnarray*} \\mathbf{{T}}= \\sum_{k=1}^{n}\\underbrace{{X}_{k}\\otimes\\cdots\\otimes {X}_{k}}_{m~multiple}=\\Big(\\sum_{k=1}^{n} x_{ki_{1}}x_{ki_{2}}\\cdots x_{ki_{m}}\\Big)_{1\\leq i_{1},\\cdots, i_{m}\\leq p}. \\end{eqnarray*} Let $W_n$ be the largest off-diagonal entry of $\\mathbf{{T}}$. We derive the asymptotic distribution of $W_n$ under a suitable normalization for two cases. They are the ultra-high dimension case with $p\\to\\infty$ and $\\log p=o(n^{\\beta})$ and the high-dimension case with $p\\to \\infty$ and $p=O(n^{\\alpha})$ where $\\alpha,\\beta>0$. The normalizing constant of $W_n$ depends on $m$ and the limiting distribution of $W_n$ is a Gumbel-type distribution involved with parameter $m$.", "revisions": [ { "version": "v1", "updated": "2019-10-28T14:20:47.000Z" } ], "analyses": { "subjects": [ "60F05", "62H10" ], "keywords": [ "largest entry", "high-dimensional data", "limiting behavior", "hypercubic random tensor", "ultra-high dimension case" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }