{ "id": "1910.12220", "version": "v1", "published": "2019-10-27T09:41:04.000Z", "updated": "2019-10-27T09:41:04.000Z", "title": "Universal minimal flows of homeomorphism groups of high-dimensional manifolds are not metrizable", "authors": [ "Yonatan Gutman", "Todor Tsankov", "Andy Zucker" ], "categories": [ "math.DS", "math.GN", "math.LO" ], "abstract": "Answering a question of Uspenskij, we prove that if $X$ is a closed manifold of dimension $2$ or higher or the Hilbert cube, then the universal minimal flow of $\\mathrm{Homeo}(X)$ is not metrizable. In dimension $3$ or higher, we also show that the minimal $\\mathrm{Homeo}(X)$-flow consisting of all maximal, connected chains in $X$ has meager orbits.", "revisions": [ { "version": "v1", "updated": "2019-10-27T09:41:04.000Z" } ], "analyses": { "keywords": [ "universal minimal flow", "homeomorphism groups", "high-dimensional manifolds", "metrizable", "meager orbits" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }