{ "id": "1910.11636", "version": "v1", "published": "2019-10-25T11:50:06.000Z", "updated": "2019-10-25T11:50:06.000Z", "title": "Fields Generated by Finite Rank Subgroups of Tori and Elliptic Curves", "authors": [ "Lukas Pottmeyer" ], "categories": [ "math.NT" ], "abstract": "Let $\\Gamma$ be a finite rank subgroup of $G$, where $G$ is either the linear torus or an CM-elliptic curve defined over a number field. We prove that the group of points in $G$ which are rational over the field generated by all elements in the divisible hull of $\\Gamma$, is free abelian modulo this divisible hull. This proves that a necessary condition for R\\'emond's generalized Lehmer conjecture is satisfied.", "revisions": [ { "version": "v1", "updated": "2019-10-25T11:50:06.000Z" } ], "analyses": { "subjects": [ "11G50", "11G05", "20K15" ], "keywords": [ "finite rank subgroup", "elliptic curves", "free abelian modulo", "divisible hull", "remonds generalized lehmer conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }