{ "id": "1910.11225", "version": "v1", "published": "2019-10-24T15:27:31.000Z", "updated": "2019-10-24T15:27:31.000Z", "title": "Localization Game for Random Graphs", "authors": [ "Andrzej Dudek", "Sean English", "Alan Frieze", "Calum MacRury", "Pawel Pralat" ], "categories": [ "math.CO" ], "abstract": "We consider the localization game played on graphs in which a cop tries to determine the exact location of an invisible robber by exploiting distance probes. The corresponding graph parameter $\\zeta(G)$ for a given graph $G$ is called the localization number. In this paper, we improve the bounds for dense random graphs determining an asymptotic behaviour of $\\zeta(G)$. Moreover, we extend the argument to sparse graphs.", "revisions": [ { "version": "v1", "updated": "2019-10-24T15:27:31.000Z" } ], "analyses": { "keywords": [ "localization game", "dense random graphs determining", "sparse graphs", "exact location", "localization number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }