{ "id": "1910.09983", "version": "v1", "published": "2019-10-20T01:45:58.000Z", "updated": "2019-10-20T01:45:58.000Z", "title": "Proof of two supercongruences conjectured by Z.-W. Sun via the Wilf-Zeilberger method", "authors": [ "Guo-Shuai Mao" ], "comment": "arXiv admin note: text overlap with arXiv:1910.00779", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, we prove two supercongruences conjectured by Z.-W. Sun via the Wilf-Zeilberger method. One of them is, for any prime $p>3$, \\begin{align*} \\sum_{n=0}^{(p-1)/2}\\frac{6n+1}{(-512)^n}\\binom{2n}n^3&\\equiv p\\left(\\frac{-2}p\\right)+\\frac{p^3}4\\left(\\frac2p\\right)E_{p-3}\\pmod{p^4}, \\end{align*} where $\\left(\\frac{\\cdot}p\\right)$ stands for the Legendre symbol, and $E_{n}$ is the $n$-th Euler number.", "revisions": [ { "version": "v1", "updated": "2019-10-20T01:45:58.000Z" } ], "analyses": { "keywords": [ "wilf-zeilberger method", "supercongruences", "th euler number", "legendre symbol" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }