{ "id": "1910.09271", "version": "v1", "published": "2019-10-21T11:46:14.000Z", "updated": "2019-10-21T11:46:14.000Z", "title": "Fractional moments of the Stochastic Heat Equation", "authors": [ "Sayan Das", "Li-Cheng Tsai" ], "comment": "19 pages", "categories": [ "math.PR" ], "abstract": "Consider the solution $\\mathcal{Z}(t,x)$ of the one-dimensional stochastic heat equation, with a multiplicative spacetime white noise, and with the delta initial data $\\mathcal{Z}(0,x) = \\delta(x)$. For any real $p>0$, we obtained detailed estimates of the $p$-th moment of $e^{t/12}\\mathcal{Z}(2t,0)$, as $t\\to\\infty$, and from these estimates establish the one-point upper-tail large deviation principle of the Kardar-Parisi-Zhang equation. The deviations have speed $t$ and rate function $\\Phi_+(y)=\\frac{4}{3}y^{3/2}$. Our result confirms the existing physics predictions [Le Doussal, Majumdar, Schehr 16] and also [Kamenev, Meerson, Sasorov 16].", "revisions": [ { "version": "v1", "updated": "2019-10-21T11:46:14.000Z" } ], "analyses": { "keywords": [ "fractional moments", "one-point upper-tail large deviation principle", "one-dimensional stochastic heat equation", "multiplicative spacetime white noise", "delta initial data" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }