{ "id": "1910.09257", "version": "v1", "published": "2019-10-21T10:28:23.000Z", "updated": "2019-10-21T10:28:23.000Z", "title": "Finding duality for Riesz bases of exponentials on multi-tiles", "authors": [ "Christina Frederick", "Kasso Okoudjou" ], "categories": [ "math.CA", "cs.IT", "math.IT" ], "abstract": "It is known that if $\\Omega \\subset \\mathbb{R}^{d}$ is bounded, measurable set that forms a $k-$tiling of $\\mathbb{R}^d$ when translated by a lattice $L$, there exists a Riesz basis of exponentials for $L^{2}(\\Omega)$ constructed using $k$ translates of the dual lattice $L^*$. In this paper we give an explicit construction of the corresponding bi-orthogonal dual Riesz basis. In addition, we extend the iterative sampling algorithm introduced in prior work to this multivariate setting.", "revisions": [ { "version": "v1", "updated": "2019-10-21T10:28:23.000Z" } ], "analyses": { "subjects": [ "42B99", "94A20", "06D50", "42A15" ], "keywords": [ "finding duality", "exponentials", "corresponding bi-orthogonal dual riesz basis", "multi-tiles", "explicit construction" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }