{ "id": "1910.09080", "version": "v1", "published": "2019-10-20T23:21:36.000Z", "updated": "2019-10-20T23:21:36.000Z", "title": "Error estimate of a bi-fidelity method for kinetic equations with random parameters and multiple scales", "authors": [ "Irene M. Gamba", "Shi Jin", "Liu Liu" ], "categories": [ "math.NA", "cs.NA", "math-ph", "math.MP" ], "abstract": "In this paper, we conduct uniform error estimates of the bi-fidelity method for multi-scale kinetic equations. We take the Boltzmann and the linear transport equations as important examples. The main analytic tool is the hypocoercivity analysis for kinetic equations, considering solutions in a perturbative setting close to the global equilibrium. This allows us to obtain the error estimates in both kinetic and hydrodynamic regimes.", "revisions": [ { "version": "v1", "updated": "2019-10-20T23:21:36.000Z" } ], "analyses": { "subjects": [ "35Q20", "65M70" ], "keywords": [ "bi-fidelity method", "random parameters", "multiple scales", "conduct uniform error estimates", "multi-scale kinetic equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }