{ "id": "1910.08303", "version": "v1", "published": "2019-10-18T08:10:42.000Z", "updated": "2019-10-18T08:10:42.000Z", "title": "Multiplication on uniform $λ$-Cantor sets", "authors": [ "Jiangwen Gu", "Kan Jiang", "Lifeng Xi", "Bing Zhao" ], "comment": "9 pages", "categories": [ "math.DS", "math.MG", "math.NT" ], "abstract": "Let $C$ be the middle-third Cantor set. Define $C*C=\\{x*y:x,y\\in C\\}$, where $*=+,-,\\cdot,\\div$ (when $*=\\div$, we assume $y\\neq0$). Steinhaus \\cite{HS} proved in 1917 that \\[ C-C=[-1,1], C+C=[0,2]. \\] In 2019, Athreya, Reznick and Tyson \\cite{Tyson} proved that \\[ C\\div C=\\bigcup_{n=-\\infty}^{\\infty}\\left[ 3^{-n}\\dfrac{2}{3},3^{-n}\\dfrac {3}{2}\\right] . \\] In this paper, we give a description of the topological structure and Lebesgue measure of $C\\cdot C$. We indeed obtain corresponding results on the uniform $\\lambda$-Cantor sets.", "revisions": [ { "version": "v1", "updated": "2019-10-18T08:10:42.000Z" } ], "analyses": { "keywords": [ "multiplication", "middle-third cantor set", "lebesgue measure", "description", "topological structure" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }