{ "id": "1910.07761", "version": "v1", "published": "2019-10-17T08:15:02.000Z", "updated": "2019-10-17T08:15:02.000Z", "title": "Range preserving maps between the spaces of continuous functions with values in a locally convex space", "authors": [ "Yuta Enami" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "Let $C(X,E)$ be the linear space of all continuous functions on a compact Hausdorff space $X$ with values in a locally convex space $E$. We characterize maps $T:C(X,E)\\to C(Y,E)$ which satisfy $\\mathrm{Ran}(TF-TG)\\subset\\mathrm{Ran}(F-G)$ for all $F,G\\in C(X,E)$.", "revisions": [ { "version": "v1", "updated": "2019-10-17T08:15:02.000Z" } ], "analyses": { "subjects": [ "46E10" ], "keywords": [ "locally convex space", "range preserving maps", "continuous functions", "compact hausdorff space", "linear space" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }