{ "id": "1910.07686", "version": "v1", "published": "2019-10-17T02:47:34.000Z", "updated": "2019-10-17T02:47:34.000Z", "title": "Critical group structure from the parameters of a strongly regular graph", "authors": [ "Joshua E. Ducey", "David L. Duncan", "Wesley J. Engelbrecht", "Jawahar V. Madan", "Eric Piato", "Christina S. Shatford", "Angela Vichitbandha" ], "comment": "20 pages", "categories": [ "math.CO" ], "abstract": "We give simple arithmetic conditions that force the Sylow $p$-subgroup of the critical group of a strongly regular graph to take a specific form. These conditions depend only on the parameters $(v, k, \\lambda, \\mu)$ of the strongly regular graph under consideration. We give many examples, including how the theory can be used to compute the critical group of Conway's $99$-graph and to give an elementary argument that no $srg(28,9,0,4)$ exists.", "revisions": [ { "version": "v1", "updated": "2019-10-17T02:47:34.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "strongly regular graph", "critical group structure", "parameters", "simple arithmetic conditions", "specific form" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }