{ "id": "1910.06835", "version": "v1", "published": "2019-10-15T14:48:29.000Z", "updated": "2019-10-15T14:48:29.000Z", "title": "Dirichlet-Poincaré profiles of graphs and groups", "authors": [ "David Hume" ], "comment": "15 pages", "categories": [ "math.GR" ], "abstract": "We define Poincar\\'{e} profiles of Dirichlet type for graphs of bounded degree, in analogy with the Poincar\\'{e} profiles (of Neumann type) defined in [HMT19]. The obvious first definition yields nothing of interest, but an alternative definition yields a spectrum of profiles which are quasi-isometry invariants and monotone with respect to subgroup inclusion. Moreover, in the extremal cases $p=1$ and $p=\\infty$, they detect the F\\o lner function and the growth function respectively.", "revisions": [ { "version": "v1", "updated": "2019-10-15T14:48:29.000Z" } ], "analyses": { "subjects": [ "20F65", "20F69" ], "keywords": [ "obvious first definition yields", "extremal cases", "subgroup inclusion", "quasi-isometry invariants", "alternative definition yields" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }