{ "id": "1910.06630", "version": "v1", "published": "2019-10-15T10:10:01.000Z", "updated": "2019-10-15T10:10:01.000Z", "title": "Relative $K$-theory via 0-cycles in finite characteristic", "authors": [ "Rahul Gupta", "Amalendu Krishna" ], "comment": "31 pages", "categories": [ "math.AG" ], "abstract": "Let $R$ be a regular semi-local ring, essentially of finite type over a perfect field of characteristic $p \\ge 3$. We show that the cycle class map with modulus from an earlier work of the authors induces a pro-isomorphism between the additive higher Chow groups of relative 0-cycles and the relative $K$-theory of truncated polynomial rings over $R$. This settles the problem of equating 0-cycles with modulus and relative $K$-theory of such rings in all characteristics $\\neq 2$.", "revisions": [ { "version": "v1", "updated": "2019-10-15T10:10:01.000Z" } ], "analyses": { "subjects": [ "14C25", "19E08", "19E15" ], "keywords": [ "finite characteristic", "cycle class map", "additive higher chow groups", "regular semi-local", "finite type" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }