{ "id": "1910.06009", "version": "v1", "published": "2019-10-14T09:38:53.000Z", "updated": "2019-10-14T09:38:53.000Z", "title": "Extendability of functions with partially vanishing trace", "authors": [ "Russell M. Brown", "Robert Haller-Dintelmann", "Patrick Tolksdorf" ], "comment": "26 pages, 7 Figures", "categories": [ "math.CA", "math.AP", "math.FA" ], "abstract": "Let $\\Omega \\subset \\mathbb{R}^d$ be an open set and $D$ be a closed part of its boundary. Under very mild assumptions on $\\Omega$, we construct a bounded Sobolev extension operator for the Sobolev spaces $\\mathrm{W}^{1 , p}_D (\\Omega)$, $1 \\leq p \\leq \\infty$, containing all $\\mathrm{W}^{1 , p} (\\Omega)$-functions that vanish in some sense on $D$. In comparison to other constructions of Brewster et. al. and Haller-Dintelmann et. al. the main focus of this work is to generalize the geometric conditions at the boundary dividing $D$ and $\\partial \\Omega \\setminus D$ that ensure the existence of an extension operator.", "revisions": [ { "version": "v1", "updated": "2019-10-14T09:38:53.000Z" } ], "analyses": { "keywords": [ "partially vanishing trace", "extendability", "bounded sobolev extension operator", "open set", "geometric conditions" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }