{ "id": "1910.05542", "version": "v1", "published": "2019-10-12T09:51:51.000Z", "updated": "2019-10-12T09:51:51.000Z", "title": "Extremal digraphs on Meyniel-type condition for hamiltonian cycles in balanced bipartite digraphs", "authors": [ "Ruixia Wang", "Linxin Wu", "Wei Meng" ], "comment": "14 pages", "categories": [ "math.CO" ], "abstract": "Adamus et al. have proved that a strong balanced bipartite digraph $D$ on $2a$ vertices is hamiltonian if $d(u)+d(v)\\ge 3a$ whenever $uv\\notin A(D)$ and $vu\\notin A(D)$. The lower bound in the result is tight. In this paper, we shall show that the extremal digraph on this condition is two classes of digraphs that can be clearly characterized.", "revisions": [ { "version": "v1", "updated": "2019-10-12T09:51:51.000Z" } ], "analyses": { "subjects": [ "05C20" ], "keywords": [ "extremal digraph", "meyniel-type condition", "hamiltonian cycles", "strong balanced bipartite digraph", "lower bound" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }